
Linked List Implementation

Abstract Data Types

Data-structure-palooza

Checkout LinkedLists2 project from SVN

Understanding the
engineering trade-offs when
storing data

 Efficient ways to store data based on how
we’ll use it

 The main theme for the last 1/6 of the course

 So far we’ve seen ArrayLists
◦ Fast addition to end of list

◦ Fast access to any existing position

◦ Slow inserts to and deletes from middle of list

 What if we have to add/remove data from a
list frequently?

 LinkedLists support this:
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow access to arbitrary elements

“random access”

 void addFirst(E element)

 void addLast(E element)

 E getFirst()

 E getLast()

 E removeFirst()

 E removeLast()

 What about accessing the middle of the list?

◦ LinkedList<E> implements Iterable<E>

Enhanced For Loop What Compiler Generates

for (String s : list) {

// do something

}

Iterator<String> iter =

list.iterator();

while (iter.hasNext()) {

String s = iter.next();

// do something

}

 A simplified version, with just the essentials

 Won’t implement the java.util.List interface

 Will have the usual linked list behavior
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow random access

 Boil down data types (e.g., lists) to their
essential operations

 Choosing a data structure for a project then
becomes:
◦ Identify the operations needed

◦ Identify the abstract data type that most efficient
supports those operations

 Goal: that you understand several basic
abstract data types and when to use them

 Array List

 Linked List

 Stack

 Queue

 Set

 Map

Implementations for all of
these are provided by the Java
Collections Framework in the

java.util package.

Q1

Operations
Provided

Array List
Efficiency

Linked List
Efficiency

Random access O(1) O(n)

Add/remove item O(n) O(1)

Q1

 A last-in, first-out (LIFO) data structure

 Real-world stacks
◦ Plate dispensers in the cafeteria

◦ Pancakes!

 Some uses:
◦ Tracking paths through a maze

◦ Providing “unlimited undo” in an application

Operations
Provided

Efficiency

Push item O(1)

Pop item O(1)

Implemented by
Stack, LinkedList,
and ArrayDeque in
Java

Q1

 A first-in, first-out (FIFO) data structure

 Real-world queues
◦ Waiting line at the BMV

◦ Character on Star Trek TNG

 Some uses:
◦ Scheduling access to shared resource (e.g., printer)

Operations
Provided

Efficiency

Enque item O(1)

Dequeue item O(1)

Implemented by
LinkedList and
ArrayDeque in Java

Q1

 Unordered collections without duplicates

 Real-world sets
◦ Students

◦ Collectibles

 Some uses:
◦ Quickly checking if an item is in a collection

Operations HashSet TreeSet

Add/remove item O(1) O(lg n)

Contains? O(1) O(lg n)

Can hog space Sorts items! Q1

 Associate keys with values

 Real-world “maps”
◦ Students

◦ Collectibles

 Some uses:
◦ Associating student ID with transcript

◦ Associating name with high scores

Operations HashMap TreeMap

Insert key-value pair O(1) O(lg n)

Look up value for key O(1) O(lg n)

Can hog space Sorts items by key! Q1

Finish LinkedList or work on
Dam Beavers

